Range sum query 2D mutable [BIT]¶
Time: O(MxN); Space: O(MxN); medium
Notes:
Time:
ctor: O(M * N)
update: O(LogM * LogN)
query: O(LogM * LogN)
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example 1:
Input: matrix =
[
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
Output:
sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Notes:
The matrix is only modifiable by the update function.
You may assume the number of calls to update and sumRegion function is distributed evenly.
You may assume that row1 <= row2 and col1 <= col2.
1. Binary Indexed Tree (BIT) solution¶
[1]:
class NumMatrix(object):
def __init__(self, matrix):
"""
:type matrix: List[List[int]]
"""
if not matrix:
return
self.__matrix = matrix
self.__bit = [[0] * (len(self.__matrix[0]) + 1) \
for _ in range(len(self.__matrix) + 1)]
for i in range(1, len(self.__bit)):
for j in range(1, len(self.__bit[0])):
self.__bit[i][j] = matrix[i-1][j-1] + self.__bit[i-1][j] + \
self.__bit[i][j-1] - self.__bit[i-1][j-1]
for i in reversed(range(1, len(self.__bit))):
for j in reversed(range(1, len(self.__bit[0]))):
last_i, last_j = i - (i & -i), j - (j & -j)
self.__bit[i][j] = self.__bit[i][j] - self.__bit[i][last_j] - \
self.__bit[last_i][j] + self.__bit[last_i][last_j]
def update(self, row, col, val):
"""
update the element at matrix[row,col] to val.
:type row: int
:type col: int
:type val: int
:rtype: void
"""
if val - self.__matrix[row][col]:
self.__add(row, col, val - self.__matrix[row][col])
self.__matrix[row][col] = val
def sumRegion(self, row1, col1, row2, col2):
"""
sum of elements matrix[(row1,col1)..(row2,col2)], inclusive.
:type row1: int
:type col1: int
:type row2: int
:type col2: int
:rtype: int
"""
return self.__sum(row2, col2) - self.__sum(row2, col1 - 1) - \
self.__sum(row1 - 1, col2) + self.__sum(row1 - 1, col1 - 1)
def __sum(self, row, col):
row += 1
col += 1
ret = 0
i = row
while i > 0:
j = col
while j > 0:
ret += self.__bit[i][j]
j -= (j & -j)
i -= (i & -i)
return ret
def __add(self, row, col, val):
row += 1
col += 1
i = row
while i <= len(self.__matrix):
j = col
while j <= len(self.__matrix[0]):
self.__bit[i][j] += val
j += (j & -j)
i += (i & -i)
[2]:
matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
numMatrix = NumMatrix(matrix)
assert numMatrix.sumRegion(2, 1, 4, 3) == 8
numMatrix.update(3, 2, 2)
assert numMatrix.sumRegion(2, 1, 4, 3) == 10